

Subject with Code: Antennas and Wave Propagation (18EC0419) Year & Sem: III-B.Tech & II-Sem Course & Branch: B.Tech - ECE

Regulation: R18

UNIT –I ANTENNA& RADIATION PARAMETERS

1	a	Define an Antenna.	[L1][CO1]	[2M]
	b	Define Radiation Intensity of an antenna.	[L1][CO1]	[2M]
	с	Define Radiation Resistance of an antenna.	[L1][CO1]	[2M]
	d	Define Radiation Pattern of an antenna.	[L1][CO1]	[2M]
	e	Define Directivity of an antenna.	[L1][C01]	[2M]
2	Ex	plain the following		
	(a)	Antenna Parameters & its types.	[L2][CO1]	[5M]
	(b) Radiation Pattern & Antenna Bandwidth.	[L2][CO1]	[5M]
3	(a)) Explain Radiation Intensity and Antenna Gain.	[L2][CO1]	[5M]
	(b) Write short notes on Radiation Pattern and Beam Efficiency.	[L1][CO1]	[5M]
4	Ex	plain the following		
	(a)) Antenna Directivity and Effective aperture of an Antenna	[L2][CO1]	[5M]
	(b) Antenna Noise Temperature and Radiation Resistance	[L2][CO1]	[5M]
5	Ex	plain the following		
	(a)) Antenna Matching.	[L2][CO1]	[5M]
	(b) Antenna Efficiency and Front to Back Ratio	[L2][CO1]	[5M]
6	Α	dipole having a length of 3 cm is operated at 1 GHz. The efficiency factor K=0.6.	[L3][CO2]	[10M]
	ca	lculate the radiation resistance, antenna gain and effective aperture		
7	De	erive expression for Electric and Magnetic Field radiated by Half Wave Dipole and	[L3][CO3]	[10M]
		etch its Field Strength pattern.		
8	De	erive expression for Electric and Magnetic Field radiated by Quarter Wave	[L3][CO3]	[10M]
	M	onopole and Sketch its Field Strength pattern.		
9	Dı	aw and Explain the concepts of radiation from the oscillating dipole	[L2][CO2]	[10M]
10		Calculate radiation resistance of a dipole antenna of length $\lambda/8$ m.	[L2][CO1]	[3 M]
	(b)	An antenna has a radiation resistance is 72Ω and a loss resistance is 8Ω . If the	[L2][CO1]	[7M]
		power gain is 16. Calculate the directivity of the antenna.		
11		What is meant by radiation pattern?	[L1][CO1]	[2M]
) Find the length of half wave dipole at 30MHz.	[L1][CO1]	[3 M]
		Define Effective Aperture and give its expression?	[L1][CO1]	[3 M]
	(d)) What are the different types of apertures?	[L1][CO1]	[2M]

UNIT –II VHF, UHF AND MICROWAVE ANTENNAS – I

1	a What are the advantages of Yagi-Uda antenna?	[L1][CO4]	[2M]
-	b Define End fire mode in helical antenna.	[L1][CO3]	[2M]
	c Define axial ratio in helical antenna.	[L1][CO3]	[2M]
	d What are the salient features of horn antenna?	[L1][CO4]	[2M]
	 e What are parasitic elements and give its significance. 	[L1][CO4]	[2M]
2	(a) Discuss about the Folded dipole antenna and its input impedance.	[L1][CO4]	[7M]
-	(b) What are parasitic elements & where they are used?	[L1][CO4]	[3M]
3	(a) Explain about construction and operation of Yagi-Uda antenna with neat sketch.	[L2][CO4]	[5M]
Č	(b) Explain about the construction and operation of helical antenna	[L2][CO4]	[5M]
		[][00.]	
4	(a) Discuss about the helical antenna geometry, axial mode of radiation and its	[L2][CO3]	[5M]
	applications.		Γ.]
	(b) Discuss about the helical antenna geometry, Normal mode of radiation and its	[L2][CO4]	[5M]
	applications.		
5	(a) Discuss about the horn antenna types & its characteristics.	[L2][CO4]	[5M]
	(b) Discuss the design considerations of pyramidal horn antenna.	[L2][CO4]	[5M]
6	(a) Discuss the types of horn antennas.	[L2][CO4]	[5M]
	(b) Write short notes on	[L1][CO4]	[5M]
	i) Folded dipole antenna ii) Yagi-Uda array		
7	(a) Calculate the directivity of 20 turn helix with $\alpha = 12^{0}$ and circumference equals to	[L3][CO4]	[7M]
	one wavelength.		
	(b) Give the applications of helical antennas.	[L1][CO4]	[3 M]
8	(a) Discuss advantages, disadvantages and applications of Yagi-Uda antenna	[L2][CO4]	[4M]
	(b) Calculate the directivity and half power beamwidth. For a 20-turns helical antenna	[L3][CO4]	[6M]
	operating at 3GHz with circumference of 10cm and spacing between the turns0.3		
	wave Length is operating at 3GHz.		
9	(a) Write short notes on Helical antenna and its Modes.	[L1][CO3]	[5M]
	(b) Calculate the directivity of pyramidal horn antenna with an aperture. If size	[L3][CO4]	[5M]
	12x12cm operating with 3.2cm wavelength.		
10	(a) Write short notes on Horn antenna.	[L1][CO4]	[3M]
	(b) Design Yagi-Uda antenna of six elements to provide a gain of 12dB if the	[L6][CO4]	[7M]
	operating frequency is 200 MHz.		
11	(a) Draw and explain the three elements of Yagi-Uda array	[L2][CO4]	[3 M]
	(b) Define Normal mode and axial mode in helical antenna?	[L1][CO3]	[3 M]
	(c) Define Pitch angle.	[L1][CO3]	[2M]
	(d) Define axial ratio.	[L1][CO3]	[2M]

UNIT –III VHF, UHF and Microwave Antennas – II

1	a What are the conditions for effective radiation of the Microstrip antenna?	[L1][CO4]	[2M]
	b What are the applications of Microstrip antenna?	[L1][CO4]	[2M]
	c What are the advantages of cassegrain feed system?	[L1][CO3]	[2M]
	d What are the feed methods for parabolic antenna?	[L1][CO3]	[2M]
	e What is the need for antenna measurements?	[L1][CO5]	[2M]
2	(a) Give the advantages and limitations of micro strip antennas.	[L1][CO4]	[4M]
	(b) Explain about micro strip antennas and its types with neat diagrams.	[L5][CO4]	[6M]
3	(a) Write short notes on flat sheet& corner reflector.	[L1][CO3]	[5M]
	(b) What are the types of reflectors? Explain the features of parabolic reflectors.	[L1][CO3]	[5M]
4	(a) Discuss the construction of rectangular patch antenna.	[L2][CO4]	[5M]
	(b) A parabolic reflector antenna with diameter 1.8 m is designed to operate at	[L2][CO2]	[5M]
	frequency of 6 GHz and illumination efficiency of 0.65.Calculate the FNBW and		
	Antenna gain.		
5	(a) Draw and explain the principle of parabolic reflector.	[L2][CO3]	[4M]
	(b) A parabolic dish provides a power gain of 50 dB at 10 GHz with 70% efficiency.	[L2][CO3]	[6M]
	Find out i)HPBW ii) BWFN iii) Diameter		
6	(a) Explain the effect between variation of focal length position and radiation in paraboloid.	[L2][CO3]	[5M]
	(b) Explain Cassegrain Feed system and give its advantages.	[L2][CO3]	[5M]
7	(a) Explain about the Reciprocity with respect to antenna measurements.	[L5][CO5]	[5M]
	(b) Explain near & far fields with respect to antenna measurements.	[L5][CO5]	[5M]
8	(a) Explain sources of Error in Antenna measurement.	[L2][CO5]	[5M]
	(b) Define Radiation pattern and explain the set up for measurement of Radiation	[L1][CO5]	[5M]
	pattern of an antenna.		
9	(a) Write short notes on Coordination system for antenna measurement.	[L1][CO5]	[4M]
	(b) Explain Gain measurement by direct comparison method.	[L1][CO5]	[6M]
10	(a) Explain the gain measurement using absolute method.	[L5][CO5]	[6M]
	(b) Explain the measurement of directivity.	[L5][CO5]	[4M]
11	(a) What is a patch antenna?	[L1][CO4]	[2M]
	(b) What are the applications of Microstrip antenna?	[L1][CO4]	[2M]
	(c) What is reflector antenna and give its significance?	[L1][CO3]	[3M]
	(d) Mention different methods of feeds of parabolic reflector antennas.	[L1][CO3]	[3M]

UNIT –IV ANTENNA ARRAYS & MEASUREMENTS

			503.53
1	a Define Binomial Array?	[L1][CO4]	[2M]
	b What is the difference between BSA and EFA?	[L1][CO4]	[2M]
	c What are the advantages of Antenna array?	[L1][CO4]	[2M]
	d What is meant by pattern multiplication?	[L1][CO4]	[2M]
	e What is the need for antenna array?	[L1][CO4]	[2M]
2	(a) What is antenna array? Define point sources and uniform linear array.	[L1][CO4]	[5M]
	(b) Write short notes on broad side and end fire arrays.	[L1][CO4]	[5M]
3		[L5][CO4]	[5M]
	(a) Explain n- element uniform linear array	[L1][CO4]	[5M]
	(b) Write short notes on collinear Array		
4	Derive the expression for far field pattern of an array of two isotropic point	[L4][CO3]	[10M]
	sources at equal amplitude same phase.		
5	Explain End fire array with increase directivity and derive the directivity equation.	[L5][CO4]	[10M]
6	Derive the expression for far field pattern of an array of two isotropic point	[L4][CO3]	[10M]
	sources at equal amplitude & opposite phase.		
7	(a) Explain pattern multiplication with appropriate examples.	[L5][CO4]	[5M]
	(b) A broad side array operating at 10cm wavelength consists of 4 half wave dipole	[L3][CO4]	[5M]
	spaced 50 cm each element carries radio frequency current in the same phase and		
	of magnitude 0.25 A. Calculate the radiated power, half power beam width of		
	major lobe.		
8	(a) Show that Directivity of BSA, L>>d is $D_0=2(d/\lambda)$.	[L5][CO4]	[7M]
	(b) Show that Directivity of EFA, L>>d is $D_0=4(d/\lambda)$.	[L5][CO4]	[3 M]
9	(a)What is principle of pattern multiplication? List the advantages and disadvantages.	[L1][CO4]	[5M]
	(b) Explain the effect of uniform and non uniform amplitude distributions.	[L2][CO4]	[5M]
10	(a) Compare the Broad side array and end fire array.	[L5][CO4]	[7M]
	(b) Define Binomial array.	[L1][CO4]	[3 M]
11	(a) What are the different types of antenna arrays?	[L1][CO4]	[3M]
	(b) What are the different cases of arrays of two point sources?	[L1][CO4]	[3M]
	(c) Find the minimum spacing between the elements in a broadside array of 10	[L2][CO4]	[4M]
	isotropic radiators to a have directivity of 7db.		
	•		

UNIT –V WAVE PROPAGATION

4		II 11[CO1]	
1	a Draw the structure of ionosphere and name the regions?	[L1][CO1]	[2M]
	b What is maximum usable frequency in wave propagation?	[L1][CO1]	[2M]
	c What is meant by Ionospheric storms?	[L1][CO1]	[2M]
	d What is meant by Multi hop propagation?	[L1][CO1]	[2M]
	e Define Skip distance.	[L1][CO1]	[2M]
2	(a) Explain different modes of Wave Propagation.	[L2][CO6]	[6M]
	(b) Explain about refraction and reflection of EM waves	[L2][CO6]	[4M]
3	Draw and Explain the structure of Ionosphere with its typical electron density	[L5][CO6]	[10M]
	variation Characteristics		
4	Explain Reflection and Refraction of sky waves by ionosphere	[L5][CO6]	[10M]
5	Explain the Structure of Ground wave propagation with neat sketch.	[L5][CO6]	[10M]
6	(a) Explain critical frequency and its expression.	[L5][CO6]	[5M]
	(b) Explain Maximum usable frequency with its expression.	[L5][CO6]	[5M]
7	(a) Explain optimum working frequency and its significance.	[L5][CO6]	[5M]
	(b) Explain lowest usable high frequency (LUHF) and give its significance.	[L5][CO6]	[5M]
8	(a) Explain Virtual height and its significance.	[L5][CO6]	[4M]
	(b) Explain Skip distance and derive its expression.	[L5][CO6]	[6M]
9	(a) Explain the relation between MUF and skip distance.	[L5][CO6]	[6M]
	(b) Explain Multihop propagation.	[L5][CO6]	[4M]
10	(a) Explain the energy loss in Ionosphere.	[L5][CO6]	[5M]
	(b) At a particular day time, the critical frequency observed in E and F layers are 2.5	[L4][CO6]	[5M]
	MHz and 8.5 MHz respectively. Calculate the maximum electron density of both		
	the layer sin cubic meter.		
11	(a) For a flat earth assume that at 400 km reflection takes place. The maximum	[L4][CO6]	[7M]
	density of ionosphere corresponds to a refractive index of 0.9 at 10 MHz.		
	Calculate range for which maximum usable frequency is 10 MHz.		
	(b) Determine the maximum usable frequency for a critical frequency of 20 MHz and	[L4][CO6]	[3M]
	an angle of incidence of 35 ⁰		
	-		

Prepared by: 1. Dr.P.G.Gopinath Professor/ECE 2. B.Ravi Babu Assoc. Professor/ECE